Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mapping shape quantitative trait loci using a radius-centroid-contour model.

Identifieur interne : 002596 ( Main/Exploration ); précédent : 002595; suivant : 002597

Mapping shape quantitative trait loci using a radius-centroid-contour model.

Auteurs : G. Fu [République populaire de Chine] ; W. Bo ; X. Pang ; Z. Wang ; L. Chen ; Y. Song ; Z. Zhang ; J. Li ; R. Wu

Source :

RBID : pubmed:23572125

Descripteurs français

English descriptors

Abstract

As the consequence of complex interactions between different parts of an organ, shape can be used as a predictor of structural-functional relationships implicated in changing environments. Despite such importance, however, it is no surprise that little is known about the genetic detail involved in shape variation, because no approach is currently available for mapping quantitative trait loci (QTLs) that control shape. Here, we address this problem by developing a statistical model that integrates the principle of shape analysis into a mixture-model-based likelihood formulated for QTL mapping. One state-of-the-art approach for shape analysis is to identify and analyze the polar coordinates of anatomical landmarks on a shape measured in terms of radii from the centroid to the contour at regular intervals. A procrustes analysis is used to align shapes to filter out position, scale and rotation effects on shape variation. To the end, the accurate and quantitative representation of a shape is produced with aligned radius-centroid-contour (RCC) curves, that is, a function of radial angle at the centroid. The high dimensionality of the RCC data, crucial for a comprehensive description of the geometric feature of a shape, is reduced by principal component (PC) analysis, and the resulting PC axes are treated as phenotypic traits, allowing specific QTLs for global and local shape variability to be mapped, respectively. The usefulness and utilization of the new model for shape mapping in practice are validated by analyzing a mapping data collected from a natural population of poplar, Populus szechuanica var tibetica, and identifying several QTLs for leaf shape in this species. The model provides a powerful tool to compute which genes determine biological shape in plants, animals and humans.

DOI: 10.1038/hdy.2012.97
PubMed: 23572125
PubMed Central: PMC3656636


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mapping shape quantitative trait loci using a radius-centroid-contour model.</title>
<author>
<name sortKey="Fu, G" sort="Fu, G" uniqKey="Fu G" first="G" last="Fu">G. Fu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, Beijing Forestry University, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, Beijing Forestry University</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bo, W" sort="Bo, W" uniqKey="Bo W" first="W" last="Bo">W. Bo</name>
</author>
<author>
<name sortKey="Pang, X" sort="Pang, X" uniqKey="Pang X" first="X" last="Pang">X. Pang</name>
</author>
<author>
<name sortKey="Wang, Z" sort="Wang, Z" uniqKey="Wang Z" first="Z" last="Wang">Z. Wang</name>
</author>
<author>
<name sortKey="Chen, L" sort="Chen, L" uniqKey="Chen L" first="L" last="Chen">L. Chen</name>
</author>
<author>
<name sortKey="Song, Y" sort="Song, Y" uniqKey="Song Y" first="Y" last="Song">Y. Song</name>
</author>
<author>
<name sortKey="Zhang, Z" sort="Zhang, Z" uniqKey="Zhang Z" first="Z" last="Zhang">Z. Zhang</name>
</author>
<author>
<name sortKey="Li, J" sort="Li, J" uniqKey="Li J" first="J" last="Li">J. Li</name>
</author>
<author>
<name sortKey="Wu, R" sort="Wu, R" uniqKey="Wu R" first="R" last="Wu">R. Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23572125</idno>
<idno type="pmid">23572125</idno>
<idno type="doi">10.1038/hdy.2012.97</idno>
<idno type="pmc">PMC3656636</idno>
<idno type="wicri:Area/Main/Corpus">002640</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002640</idno>
<idno type="wicri:Area/Main/Curation">002640</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002640</idno>
<idno type="wicri:Area/Main/Exploration">002640</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mapping shape quantitative trait loci using a radius-centroid-contour model.</title>
<author>
<name sortKey="Fu, G" sort="Fu, G" uniqKey="Fu G" first="G" last="Fu">G. Fu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, Beijing Forestry University, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, Beijing Forestry University</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bo, W" sort="Bo, W" uniqKey="Bo W" first="W" last="Bo">W. Bo</name>
</author>
<author>
<name sortKey="Pang, X" sort="Pang, X" uniqKey="Pang X" first="X" last="Pang">X. Pang</name>
</author>
<author>
<name sortKey="Wang, Z" sort="Wang, Z" uniqKey="Wang Z" first="Z" last="Wang">Z. Wang</name>
</author>
<author>
<name sortKey="Chen, L" sort="Chen, L" uniqKey="Chen L" first="L" last="Chen">L. Chen</name>
</author>
<author>
<name sortKey="Song, Y" sort="Song, Y" uniqKey="Song Y" first="Y" last="Song">Y. Song</name>
</author>
<author>
<name sortKey="Zhang, Z" sort="Zhang, Z" uniqKey="Zhang Z" first="Z" last="Zhang">Z. Zhang</name>
</author>
<author>
<name sortKey="Li, J" sort="Li, J" uniqKey="Li J" first="J" last="Li">J. Li</name>
</author>
<author>
<name sortKey="Wu, R" sort="Wu, R" uniqKey="Wu R" first="R" last="Wu">R. Wu</name>
</author>
</analytic>
<series>
<title level="j">Heredity</title>
<idno type="eISSN">1365-2540</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Quantitative Trait Loci (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse en composantes principales (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Environnement (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Phénotype (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Locus de caractère quantitatif</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chromosome Mapping</term>
<term>Crosses, Genetic</term>
<term>Environment</term>
<term>Genotype</term>
<term>Humans</term>
<term>Models, Statistical</term>
<term>Phenotype</term>
<term>Principal Component Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Animaux</term>
<term>Cartographie chromosomique</term>
<term>Croisements génétiques</term>
<term>Environnement</term>
<term>Génotype</term>
<term>Humains</term>
<term>Modèles statistiques</term>
<term>Phénotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As the consequence of complex interactions between different parts of an organ, shape can be used as a predictor of structural-functional relationships implicated in changing environments. Despite such importance, however, it is no surprise that little is known about the genetic detail involved in shape variation, because no approach is currently available for mapping quantitative trait loci (QTLs) that control shape. Here, we address this problem by developing a statistical model that integrates the principle of shape analysis into a mixture-model-based likelihood formulated for QTL mapping. One state-of-the-art approach for shape analysis is to identify and analyze the polar coordinates of anatomical landmarks on a shape measured in terms of radii from the centroid to the contour at regular intervals. A procrustes analysis is used to align shapes to filter out position, scale and rotation effects on shape variation. To the end, the accurate and quantitative representation of a shape is produced with aligned radius-centroid-contour (RCC) curves, that is, a function of radial angle at the centroid. The high dimensionality of the RCC data, crucial for a comprehensive description of the geometric feature of a shape, is reduced by principal component (PC) analysis, and the resulting PC axes are treated as phenotypic traits, allowing specific QTLs for global and local shape variability to be mapped, respectively. The usefulness and utilization of the new model for shape mapping in practice are validated by analyzing a mapping data collected from a natural population of poplar, Populus szechuanica var tibetica, and identifying several QTLs for leaf shape in this species. The model provides a powerful tool to compute which genes determine biological shape in plants, animals and humans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23572125</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2540</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Heredity</Title>
<ISOAbbreviation>Heredity (Edinb)</ISOAbbreviation>
</Journal>
<ArticleTitle>Mapping shape quantitative trait loci using a radius-centroid-contour model.</ArticleTitle>
<Pagination>
<MedlinePgn>511-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/hdy.2012.97</ELocationID>
<Abstract>
<AbstractText>As the consequence of complex interactions between different parts of an organ, shape can be used as a predictor of structural-functional relationships implicated in changing environments. Despite such importance, however, it is no surprise that little is known about the genetic detail involved in shape variation, because no approach is currently available for mapping quantitative trait loci (QTLs) that control shape. Here, we address this problem by developing a statistical model that integrates the principle of shape analysis into a mixture-model-based likelihood formulated for QTL mapping. One state-of-the-art approach for shape analysis is to identify and analyze the polar coordinates of anatomical landmarks on a shape measured in terms of radii from the centroid to the contour at regular intervals. A procrustes analysis is used to align shapes to filter out position, scale and rotation effects on shape variation. To the end, the accurate and quantitative representation of a shape is produced with aligned radius-centroid-contour (RCC) curves, that is, a function of radial angle at the centroid. The high dimensionality of the RCC data, crucial for a comprehensive description of the geometric feature of a shape, is reduced by principal component (PC) analysis, and the resulting PC axes are treated as phenotypic traits, allowing specific QTLs for global and local shape variability to be mapped, respectively. The usefulness and utilization of the new model for shape mapping in practice are validated by analyzing a mapping data collected from a natural population of poplar, Populus szechuanica var tibetica, and identifying several QTLs for leaf shape in this species. The model provides a powerful tool to compute which genes determine biological shape in plants, animals and humans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, Beijing Forestry University, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bo</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>X</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Z</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Z</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Heredity (Edinb)</MedlineTA>
<NlmUniqueID>0373007</NlmUniqueID>
<ISSNLinking>0018-067X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23572125</ArticleId>
<ArticleId IdType="pii">hdy201297</ArticleId>
<ArticleId IdType="doi">10.1038/hdy.2012.97</ArticleId>
<ArticleId IdType="pmc">PMC3656636</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Mar 13;422(6928):161-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Feb;157(2):785-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11156997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Med. 2004 Oct 15;23(19):3033-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4728-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Feb;104(2-3):241-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Jan;121(1):185-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2563713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Sep;11(9):623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 May;59(5):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16136802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1997 Feb;84(2):143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20182604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Feb;7(1):65-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004;16 Suppl:S181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2012 Jan;25(1):115-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Oct;153(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2010;7:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20594352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2008 Dec;101(6):518-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2005;49(5-6):547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2010;91:169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20705182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(8):e11384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20814428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Nov 11;55(11):2342-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11794792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Mar;56(3):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11989686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2005 Jan 21;232(2):157-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2003 Jan;57(1):191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12643582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Apr;166(4):1909-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Feb 28;299(5611):1404-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1993 Apr;8(4):129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bo, W" sort="Bo, W" uniqKey="Bo W" first="W" last="Bo">W. Bo</name>
<name sortKey="Chen, L" sort="Chen, L" uniqKey="Chen L" first="L" last="Chen">L. Chen</name>
<name sortKey="Li, J" sort="Li, J" uniqKey="Li J" first="J" last="Li">J. Li</name>
<name sortKey="Pang, X" sort="Pang, X" uniqKey="Pang X" first="X" last="Pang">X. Pang</name>
<name sortKey="Song, Y" sort="Song, Y" uniqKey="Song Y" first="Y" last="Song">Y. Song</name>
<name sortKey="Wang, Z" sort="Wang, Z" uniqKey="Wang Z" first="Z" last="Wang">Z. Wang</name>
<name sortKey="Wu, R" sort="Wu, R" uniqKey="Wu R" first="R" last="Wu">R. Wu</name>
<name sortKey="Zhang, Z" sort="Zhang, Z" uniqKey="Zhang Z" first="Z" last="Zhang">Z. Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Fu, G" sort="Fu, G" uniqKey="Fu G" first="G" last="Fu">G. Fu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002596 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002596 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23572125
   |texte=   Mapping shape quantitative trait loci using a radius-centroid-contour model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23572125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020